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A note on forward wakes in rotating fluids 

By K. STEWARTSON 
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(Received 12 December 1969) 

The two studies by Professor Miles (1970a, b)  on the motion of a rotating fluid 
past a body raise the important question of the determinancy of such flows, by 
theoretical arguments, which it seems worth while making more precise. Suppose 
we have a fluid which when undisturbed has a uniform velocity U in the direction 
Ox and a uniform angular velocity Q about Ox. It is slightly disturbed, the re- 
sulting motion having velocity components (u + U ,  v,  Slr + w) relative to cylin- 
drical polar axes (x,r,8),  centre 0 and in which r measures distance from Ox, 
while 8 is the azimuthal angle. Assuming that u, v,  w are sufficiently small for 
their squares and products to be neglected, and are independent of 8, the equa- 
tions governing their behaviour reduce to 

-+ av U--2QW av = - - + v [ v 2 v - ; ] ,  aP 
at ax ar 

aw aw -+ at U - + 2 Q w  ax = v [ V 2 w - ; ] ,  

where @ is the stream function, P is the reduced pressure and v the kinematic 
viscosity. Interest mainly centres on the form of the solution when v = 0 and 
t + co, i.e. the steady motion of an inviscid fluid. On setting a/at = 0, v = 0 the 
equations (1) reduce to 

where a = 2Q/U and F ,  G are arbitrary functions of r. If we now think of the 
disturbance as being caused by a surface r = f(x), x1 < x < x2, bounding a convex 
region, where f(xJ = f ( x 2 )  = 0 and f takes its maximum value, equal to 6, at  
x = 0, then the linearization holds in two cases: (a)  when a6 $ 1, f arbitrary, and 
(b )  when I f ' \  .g 1, a6 arbitrary. In  neither case, however, can the solution be 
completed. For example, if I f  ' 1  -g 1 the boundary condition on the body reduces 
to II. = --Bur2 when r = f(x), (3) 
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and we do not know the appropriate condition on $ at large distances from the 
body. Even if we knew that F = G = 0 and $ -+ 0 as 1x1 -+ 00, (3) is insufficient 
to determine $ as we need an analogue of the radiation condition to complete 
the solution. 

Two methods have been suggested to overcome these difficulties. First, we 
can suppose that v = 0 and the disturbed motion begins from a state of relative 
rest at  t = 0. Then the Laplace transform $(x, r,  s )  of the stream function $, with 
respect to time using s as parameter, can be written in the form 

if x < 0, where is arbitrary and I( > 0) a known function of @, s, a. If x > 0 the 
corresponding expression for 3 consists of the sum of three terms like (a), but 
with I < 0. The properties of these general solutions have been examined by 
Stewartson (1958) and Trustrum (1964). On letting s -+ 0 we can hopefully obtain 
the limit structure of $ as t -+ 00 and deduce the properties of F ,  G. This was done 
explicitly by Stewartson (1968), who found, as a consequence, that at  points in 
the fluid 

if x < 0; ( 5 )  

x > 0. (6) 

i $ = Y + r / o a 4 @ ) J l ( r p ) d @ ,  

w = - ( a / r ) Y + r s 0 @ A ( P ) J ( r @ ) d @ ,  

$ = y-?. * a  1 A(P)J,(r@)aa+rSrnB(P)Jl(rI7)dB, 0 i 
W 

Here 

and ‘F also satisfies Long’s hypothesis (Long 1953), namely that it contains no 
wave-like terms when x is la.rge and negative. Further A(@),  B(@) are arbitrary 
functions of /3 except that $, w as defined by ( 5 ) ,  (6) must be continuous at x = 0 
for all r > 6. The last condition may be achieved if 

where a and b are arbitrary functions of r in 0 < r < 6. 
Secondly, we can suppose that v > 0, the motion is steady and undisturbed 

at infinity. Then the general form for $ is a combination of integrals like (4) 
with s replaced by v and different functions d, 1. Some properties of these func- 
tions have also been determined by Trustrum (1964) when v is small, and in a 
private communication Professor Miles has pointed out that, for fixed x, the 
general solution for $ is identical with ( 5 ) ,  (6) in the limit v -+ 0. There is no 
contradiction with the assumption of undisturbed motion at  infinity for the 
terms independent of x in ( 5 ) ,  (6) die away when Ivxl 9 1. 

The result of these two approaches may be applied formally to both problems 
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(a) and (b) .  In  (a) the unsteady treatment given by Stewartson (1952) leads to 
the same solution provided we set Y = 0. [we note that if Y + 0 the solution must 
contain violent oscillations since a8 B 1 .] In  particular for a sphere 

In case ( b )  when 01 = 0, $- = Y except in the lee of the body [x > 0, r < 81. Further 
when a(x2 - xl) N 1 the contributions to $-, w from a and b are relatively small 
except in the lee. Of more interest is the flow when a8 N 1 when the contributions 
from a and b to $-, w may then be significant. This may most easily be seen by 
choosing non-dimensional co-ordinates based on 8, when a is replaced by a8 and 
the length of the surface becomes (z2 - z,)/8. Even though A and B may be as 
important as Y the boundary conditions satisfied by Y are independent of them. 
For since the perturbation velocities are small (3) may be replaced by 

aY/ax = - Uf(x) f ’ ( z )  when r = f(x), (10) 

so that Y, which satisfies Long’s hypothesis, is fully determinate and independent 
of the wake-like terms. 

An attempt to estimate A and B has been made by Stewartson (1968), who 
assumed that (1) holds even for fat bodies with a8 - 1 and ensured uniqueness by 
imposing the no-slip condition. In  view of the essential contradiction between 
this assumption and that of small disturbances from which (1) is deduced, it is 
not surprising that the attempt was only partially successful from a physical 
standpoint. Certain features of the observations are reproduced however which 
suggest that viscosity does play a role in providing the missing boundary con- 
ditions. In  the preceding paper Miles argued that in unseparated flow A = B = 0 
but this is not the case when a8 & 1, where strong forward and rear wakes are 
set up by inviscid action alone and the notion of separation plays no part. 
Further, so long as the disturbances are small and a8 - 1 the only effect of A 
and B is a slight modification to the axial velocity and none to the direction of 
the streamlines. The most noticeable modifications produced by A and B are 
to the pressure distribution on the body and to the far field which is now no 
longer uniform. 

It has also been suggested that for fat bodies Long’s hypothesis holds for a 
range of values of 018, including a8 = 0. The consequences for a sphere have been 
worked out (Stewartson 1958, 1969) and lead to drag coefficients which become 
excessively high at  moderate values of a8 (e.g. C, = 14.39 at a8 = 3). Miles (1969) 
then made the hypothesis that this assumption breaks down a t  the first onset 
of closed streamlines in the flow, which for a sphere occurs when a8 N 2.2 at 
the place x = 0, ar = 2n, and suggested that more accurate calculations would 
move it farther downstream. The occurrence of such a rotor would seem to be 
only remotely connected with a wake at large distances upstream of the body. 
In  a further private communication Professor Miles points out that at  a8 N 2.2 
there is also an incipient rotor at the forward stagnation point, which we shall 
discuss further below. Very recently Benjamin (1970) has made a study of the 
impulse function of a swirling unsteady inviscid flow inside a tube of radius R. 
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He demonstrates that if U < 0.522RR it is impossible for the flow to remain 
undisturbed for all time a t  an arbitrarily large but fixed distance upstream if the 
flow near the body ultimately becomes steady. The implication is that in an 
unbounded fluid, which is under consideration here, there is always a forward 
wake independently of whether separation has taken place ; little information 
about its structure may be deduced however. 

Thus it seems that the purely theoretical approach has reached an impasse; 
no convincing way has yet been found of making the solution unique and at  the 
same time relevant to experimentally realizable flows. The functions a(r)  and b(r)  
seem to be non-zero but few of their properties are known. This non-uniqueness 
has been noted in certain problems of magnetohydrodynamics and in stratified 
flows: indeed it is formally present in all linearized studies of flow past finite 
bodies. For example a and b are indeterminate even when a = 0 but, as mentioned 
earlier, only modify the flow in the lee of the body. 

Actual experiments are few. Taylor (1922) was the first to observe a strong 
upstream wake ahead of a sphere when a6 > N 27r, and Long (1953) was partly 
led to his hypothesis, mentioned earlier, by observing the wave structure round 
moving bodies, and found that the column occurs only if a6 > N 8. I first became 
aware of the possibility of a forward wake at all a6 > 0 from seeing some un- 
published experiments by Professor H. B. Squire and very recently Professor T. 
Maxworthy has made a quantitative study of this phenomenon, when the body 
is a sphere of radius 6. He finds that a bubble of almost stagnant fluid [i.e. with 
low axial velocity] always occurs ahead of the sphere and its length L increases 
as v decreases. As v --f 0,  L approaches a finite limit if a d  < 4. At the smallest 
value of a6 used ( N 0.6), L z 0.26: at a6 w 2, L w +a and thereafter it rapidly 
increases with ad. Thus Miles’ assumption of the validity of Long’s hypothesis for 
a6 < 2.2 is at  variance with these experiments since it implies that there are no 
rotors at  the forward stagnation point. There is also firm evidence of a forward 
wake, beyond the bubble. For example at a6 w 1.75 the flow is strongly disturbed 
at  x = - 86 but it is not clear what happens as v --f 0. Downstream the wake is 
present at  all values of a6 of course but its character changes as a6 increases from 
zero. The ejected boundary-layer fluid tends to concentrate on the axis and 
there is evidence of vortex breakdown. The drag coefficient, for small values 
of v, is non-zero when a6 = 0, falls a little as a d  increases and then rises steadily, 
ultimately being M gas. It is quite different from that obtained by Stewartson 
(1958, 1969) on the assumption of Long’s hypothesis and about 50 % more than 
predicted by Stewartson (1952) when a6 $ 1. 

Pritchard (1969) has carried out a related set of experiments in which a body 
moves along the axis of a rotating fluid. He concludes that an ever-lengthening 
column of fluid is trapped in front of the body if a8 > N 3, that at  lower values 
of a6 a finite disturbance extends far upstream and as a6 --f 0 a potential-flow 
pattern is approached. The differences between the two experiments are of degree 
rather than character, and may be due to the rather higher Reynolds numbers in 
Pritchard’s experiments, but both support the view that a and b are non-zero. 
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